Supercompact cardinals, sets of reals, and weakly homogeneous trees.

نویسنده

  • W H Woodin
چکیده

It is shown that if there exists a supercompact cardinal then every set of reals, which is an element of L(R), is the projection of a weakly homogeneous tree. As a consequence of this theorem and recent work of Martin and Steel [Martin, D. A. & Steel, J. R. (1988) Proc. Natl. Acad. Sci. USA 85, 6582-6586], it follows that (if there is a supercompact cardinal) every set of reals in L(R) is determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Tree Property

We construct a model in which there are no @n-Aronszajn trees for any nite n 2, starting from a model with innnitely many supercompact cardinals. We also construct a model in which there is no ++-Aronszajn tree for a strong limit cardinal of coonality !, starting from a model with a supercompact cardinal and a weakly compact cardinal above it.

متن کامل

Inner models with large cardinal features usually obtained by forcing

We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal κ for which 2κ = κ+, another for which 2κ = κ++ ...

متن کامل

Stationary Reflection and Level by Level Equivalence

We force and construct a model in which level by level equivalence between strong compactness and supercompactness holds, along with certain additional “inner model like” properties. In particular, in this model, the class of Mahlo cardinals reflecting stationary sets is the same as the class of weakly compact cardinals, and every regular Jonsson cardinal is weakly compact. On the other hand, w...

متن کامل

Absoluteness for Universally Baire Sets and the Uncountable Ii

Using ♦ and large cardinals we extend results of Magidor–Malitz and Farah–Larson to obtain models correct for the existence of uncountable homogeneous sets for finite-dimensional partitions and universally Baire sets. Furthermore, we show that the constructions in this paper and its predecessor can be modified to produce a family of 2ω1 -many such models so that no two have a stationary, costat...

متن کامل

The tree property at ℵω+1

We show that given ω many supercompact cardinals, there is a generic extension in which there are no Aronszajn trees at אω+1. This is an improvement of the large cardinal assumptions. The previous hypothesis was a huge cardinal and ω many supercompact cardinals above it, in Magidor-Shelah [7].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 85 18  شماره 

صفحات  -

تاریخ انتشار 1988